Thursday, October 6, 2022

Uniformly convex spaces

Uniformly convex spaces

Uniformly convex spaces

[to be updated …]

Every uniformly convex space is reflexive, see Proposition 2.4.11. page 55 [1]. So,
Hilbertuniformly convexreflexive\text{Hilbert} \Longrightarrow \text{uniformly convex} \Longrightarrow \text{reflexive}

Uniformly characterization

It is well known that the Hilbert space is uniformly convex due to the parallelogram
equality:
u+v2+uv2=2(u2+v2)||u+v||^2+||u-v||^2=2(||u||^2+||v||^2)

Similarly, the LpL^p spaces for p(1,+)p\in (1, +\infty) is also uniformly convex due the inequality called Clarkson’s inequalities, see Proposition 2.4.9. page 53 [1],

  • For p[2,+)p\in [2, +\infty), u+v2p+uv2p12(up+vp)||\frac{u+v}{2}||^p+||\frac{u-v}{2}||^p \leq \frac{1}{2}(||u||^p+||v||^p)
  • For p(1,2]p\in (1, 2], u+v2p+uv2p12(up+vp)p1||\frac{u+v}{2}||^{p'}+||\frac{u-v}{2}||^{p'} \leq \frac{1}{2}(||u||^{p'}+||v||^{p'})^{p-1} where 1p+1p=1\frac{1}{p}+\frac{1}{p'}=1.

References

[1]: Attouch, Hedy, Giuseppe Buttazzo, and GĂ©rard Michaille. Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. Society for Industrial and Applied Mathematics, 2014.

Popular Posts