Wednesday, September 13, 2023

Biconjugate_Theorem

Biconjugate_Theorem

Biconjugate theorem for convex functions

1. Notations

Let XX be a vector space. Let XX^* be the vector space so that (X,X)(X, X^*) be a dual pair. Let ,\langle \cdot, \cdot\rangle be the finite real-valued bi-linear map corresponds to this dual pair. Recall that, in this setup we have X=XX^{**} =X. Let w=σ(X,X)w=\sigma(X, X^*) and w=σ(X,X)w^*=\sigma(X^*, X) be respectively the weak and weak* topologies on XX and XX^*.

Consider f:XRf: X\rightarrow \overline{\mathbb R}, define its conjugate as a function f:XRf^*: X^*\rightarrow \overline{\mathbb R}
f(x)=supxXx,xf(x).f(x^*) = \sup_{x\in X}\langle x^*, x\rangle-f(x).

Theorem (Fenchel-Young’s inequality) For xXx\in X and xXx^*\in X^*, we have
f(x)+f(x)x,x.f(x) +f^*(x^*) \geq \langle x^*, x\rangle.

Proof. By the definition of conjugate. \square

2. Biconjugate Theorem

Theorem (Biconjugate Theorem, @Zalinescu Theorem 2.3.3) If ff is closed proper convex function. Then f=f.f^{**}=f.

Proof. We first show that fff^{**}\leq f. For xXx\in X and xXx^*\in X^* we have x,xf(x)f(x).\langle x, x^*\rangle - f^*(x^*)\leq f(x).

The supremum of the LHS w.r.t. xx^* is f(x)f^{**}(x), thus f(x)f(x)f^{**}(x)\leq f(x).

We now show that if f(x0)<f(x0)f^{**}(x_0)< f(x_0) for some x0Xx_0\in X, one can derive a contradiction. Indeed, since ff is closed, (x0,f(x0))epif(x_0, f^{**}(x_0)) \notin epi f.

Recall the Hahn-Banach separation theorem, see e.g. [@Zalinescu Theorem 1.1.5], Let VV be a locally convex space and A,BVA,B \subset V be two nonempty convex sets. If AA is closed, BB is compact and AB=A \cap B =\emptyset, then there exist vV{0}v^* \in V^* \setminus \{0\} so that
infv(B)>supv(A).\inf v^*(B) > \sup v^*(A).
Apply above Hahn-Banach separation theorem for V=X×RV = X\times \mathbb R, A=epifA = epi f and B={(x0,f(x0))}B= \{(x_0, f^{**}(x_0))\}. There exists (x0,α)X×R(x_0^*, \alpha)\in X^*\times \mathbb R so that

x0,x0+αf(x0)>sup{x0,x+αt:(x,t)epif}.(1)\langle x_0^*, x_0\rangle + \alpha f^{**}(x_0)> \sup\{ \langle x_0^*, x\rangle + \alpha t:(x, t)\in epi f\}. \tag{1}

We now show contradiction by considering three cases of α\alpha: α>0,α<0,α=0\alpha>0, \alpha<0, \alpha=0.

CASE 1. α>0\alpha>0. Notice that if (x,t)epif(x, t)\in epi f, then (x,t+n)epif(x,t+n)\in epi f for all nNn\in \mathbb N. Since α>0\alpha>0, the RHS of (1)(1) will be ++\infty. Thus, LHS of (1)(1) strictly greater than ++\infty, which is impossible.

CASE 2. α<0\alpha<0. We then divide both sides of above inequality by α-\alpha and get

α1x0,x0f(x0)>sup{α1x0,xt:(x,t)epif}=sup{α1x0,xf(x):xdomf}=f(α1x0).\begin{aligned} \langle -\alpha^{-1} x_0^*, x_0\rangle - f^{**}(x_0) > & \sup\{ \langle -\alpha^{-1}x_0^*, x\rangle - t:(x, t)\in epi f\}\\ = & \sup\{ \langle -\alpha^{-1}x_0^*, x\rangle - f(x):x\in dom f\}\\ = & f^{*}(-\alpha^{-1}x_0^*). \end{aligned}

Which contradicts to Fenchel Young’s inequality.

CASE 3. α=0\alpha=0. In this case, (1)(1) can be rewritten

x0,x0>sup{x0,x:xdomf}.\langle x_0^*, x_0\rangle > \sup\{ \langle x_0^*, x\rangle: x\in dom f\}.

Let h>0h > 0 and y0domfy^*_0\in dom f^* be arbitrarily chosen. Here, the existence of yy^* is well defined since ff^* is proper. One obtains

f(y0+hx0)=sup{x,y0+hx,x0f(x):xdomf}sup{x,y0f(x):xdomf}+hsup{x,x0:xdomf}=f(y0)+hsup{x,x0:xdomf}\begin{aligned} f^*(y_0^*+hx_0^*) = & \sup\{\langle x, y_0^*\rangle +h \langle x, x_0^*\rangle -f(x): x\in dom f\}\\ \leq & \sup\{\langle x, y_0^*\rangle -f(x): x\in dom f\} + h \sup\{\langle x, x_0^*\rangle : x\in dom f\}\\ = & f^*(y_0^*) + h \sup\{\langle x, x_0^*\rangle : x\in dom f\} \end{aligned}

Combining this inequality and Fenchel-Young inequality, we obtain

f(x0)y0+hx0,x0f(y0+hx0)y0,x0f(y0)+h[x0,x0supxdomfx0,x]\begin{aligned}f^*(x_0^*) \geq & \langle y_0^* +hx_0^*, x_0^*\rangle- f(y_0^*+hx_0^*)\\ \geq & \langle y_0^*, x_0^*\rangle - f^*(y_0^*) + h[\langle x_0^*, x_0\rangle - \sup_{x\in dom f} \langle x_0^*, x\rangle] \end{aligned}

Note that f(y0)f^*(y_0^*) is finite since y0domfy^*_0 \in dom f^*.
Therefore, letting h+h\rightarrow +\infty, we have f(x0)=f^{**}(x_0)=\infty, which is a contradiction.\square

Remark.

a) By definition, ff is closed iff epifepi f is closed w.r.t. the weak topology w×topo(R)w \times topo(\mathbb R). If XX is a norm space and ff is proper convex, ff is closed iff it is weakly closed. This is because epifepi f is a non-empty convex set, then epifepi f is closed iff epifepi f is weakly closed.

b) Above theorem also holds for f:XRf: X^* \rightarrow \overline{ \mathbb R}, here f:XRf^*: X \rightarrow \overline{ \mathbb R}, i.e. f=ff^{**}=f

3. References

[1] Zalinescu, Constantin. Convex analysis in general vector spaces. World scientific, 2002.

Popular Posts