Friday, October 17, 2025

Modular and Submodular Properties of the Sum and Max Functions

Modular and Submodular Properties of the Sum and Max Functions

Modular and Submodular Properties of the Sum and Max Functions

1. Introduction

In optimization and combinatorics, set functions play a central role.
Given a finite ground set NN, a set function is any mapping:

f:2NR. f: 2^N \to \mathbb{R}.

Two of the most common examples are:

  • Sum function:
    fsum(S)=iSwif_{\text{sum}}(S) = \sum_{i \in S} w_i

  • Max function:
    fmax(S)=maxiSwif_{\text{max}}(S) = \max_{i \in S} w_i

for some fixed weights wiRw_i \in \mathbb{R}.

These functions exhibit interesting structural properties known as modularity and submodularity, which are fundamental concepts in combinatorial optimization.


2. Modularity and Submodularity

Definition

A function f:2NRf: 2^N \to \mathbb{R} is submodular if for all subsets A,BNA, B \subseteq N,

f(A)+f(B)f(AB)+f(AB). f(A) + f(B) \ge f(A \cup B) + f(A \cap B).

If equality always holds, then ff is modular.


2.1 The Sum Function is Modular

Consider

fsum(S)=iSwi. f_{\text{sum}}(S) = \sum_{i \in S} w_i.

Then for any A,BNA, B \subseteq N,

f(A)+f(B)=iAwi+iBwi=iABwi+iABwi=f(AB)+f(AB). \begin{aligned} f(A) + f(B) &= \sum_{i \in A} w_i + \sum_{i \in B} w_i \\ &= \sum_{i \in A \cup B} w_i + \sum_{i \in A \cap B} w_i \\ &= f(A \cup B) + f(A \cap B). \end{aligned}

Thus, the sum function satisfies equality for all pairs (A,B)(A,B), and therefore it is modular.


2.2 The Max Function is Submodular

Now consider

fmax(S)=maxiSwi. f_{\text{max}}(S) = \max_{i \in S} w_i.

We must show that for all A,BNA,B \subseteq N,

f(A)+f(B)f(AB)+f(AB). f(A) + f(B) \ge f(A \cup B) + f(A \cap B).

Let

a=f(A)=maxiAwi,b=f(B)=maxiBwi. a = f(A) = \max_{i \in A} w_i, \quad b = f(B) = \max_{i \in B} w_i.

Then

f(AB)=max(a,b), f(A \cup B) = \max(a, b),
and
f(AB)min(a,b). f(A \cap B) \le \min(a, b).

Hence,

f(AB)+f(AB)max(a,b)+min(a,b)=a+b=f(A)+f(B). f(A \cup B) + f(A \cap B) \le \max(a, b) + \min(a, b) = a + b = f(A) + f(B).

Therefore, the inequality holds for all A,BA,B, so fmaxf_{\text{max}} is submodular.


3. Summary

Function Expression Property Reason
Sum f(S)=iSwif(S) = \sum_{i\in S} w_i Modular Equality holds in the submodular inequality
Max f(S)=maxiSwif(S) = \max_{i\in S} w_i Submodular Inequality holds, with possible strict inequality

Both functions are monotone (non-decreasing with respect to inclusion), but only the sum function is exactly modular.
The max function is strictly submodular unless the maximum element is shared across all subsets.


Keywords: modular function, submodular function, combinatorial optimization, set function, convexity

Popular Posts