Saturday, October 25, 2025

Topkis's Theorem

Topkis's Theorem

Topkis’ Theorem for Set-Valued Decisions and Supermodular Functions

🌐 Introduction

Topkis’ theorem is one of the cornerstones of monotone comparative statics — it tells us that under certain “complementarity” conditions, optimal choices move monotonically with parameters.

⚙️ Setting

Let XX be a finite ground set. The decision variable is a subset SXS \subseteq X, and we consider the lattice (2X,)(2^X, \subseteq) with:

  • Join operation: ST=STS \vee T = S \cup T
  • Meet operation: ST=STS \wedge T = S \cap T

Let the parameter tt vary in a subset TRT \subseteq \mathbb{R}.

We study the optimization problem:

maxSXf(S,t) \max_{S \subseteq X} f(S, t)

where f:2X×TRf: 2^X \times T \to \mathbb{R} is our objective function.

🧩 Assumptions

1. Supermodularity in SS

For each fixed tt, f(,t)f(\cdot, t) is supermodular on 2X2^X.
That is, for all A,BXA, B \subseteq X:

f(A,t)+f(B,t)f(AB,t)+f(AB,t). f(A, t) + f(B, t) \le f(A \cup B, t) + f(A \cap B, t).

Equivalently, this inequality can be rewritten as

f(B,t)f(AB,t)f(AB,t)f(A,t). f(B, t) - f(A \cap B, t) \le f(A \cup B, t) - f(A, t).

Let Δ=B(AB)=(AB)A\Delta = B \setminus (A \cap B) = (A \cup B) \setminus A.
Since C=ABAC = A \cap B \subset A, the inequality above can also be expressed as

f(CΔ,t)f(C,t)f(AΔ,t)f(A,t). f(C\cup \Delta, t) - f(C, t) \le f(A\cup \Delta, t) - f(A, t).

This reformulation highlights the complementarity among elements of the set SS:
the incremental benefit of adding a common “increment” Δ\Delta is larger when it is added to a bigger base set. In other words, the marginal gain from adding elements increases as the set grows.


2. Increasing Differences between SS and tt

For all AAXA \subseteq A' \subseteq X and ttt\le t':

[f(A,t)f(A,t)][f(A,t)f(A,t)]. [f(A', t') - f(A', t)] \ge [f(A, t') - f(A, t)].

This condition means that the marginal gain with respect to the parameter is nondecreasing as the set grows. In other words, larger sets benefit more (or suffer less) from an increase in tt.

We can express this idea in an equivalent, dual form — stating that the marginal gain with respect to the set is also nondecreasing as parameter increases:

[f(A,t)f(A,t)][f(A,t)f(A,t)]. [f(A', t') - f(A, t')] \ge [f(A', t) - f(A, t)].

Equivalently, ff is supermodular on the product lattice 2X×T2^X \times T:

f(A,t)+f(A,t)f(A,t)+f(A,t), f(A', t) + f(A, t') \le f(A', t') + f(A, t),

or, using lattice notation,

f(A,t)+f(A,t)f((A,t)(A,t))+f((A,t)(A,t)). f(A', t) + f(A, t') \le f\big((A', t) \vee (A, t')\big) + f\big((A', t) \wedge (A, t')\big).

This property captures complementarity between the decision variable SS and the parameter tt— an increase in tt raises the attractiveness of choosing larger sets.

🧠 Theorem (Topkis’ Monotonicity Theorem – Set Version)

Let

M(t)=argmaxSXf(S,t) \mathcal{M}(t) = \arg\max_{S \subseteq X} f(S, t)

be the set of optimal choices at parameter tt.

Then for any ttt \le t':

  1. If AM(t)A \in \mathcal{M}(t) and BM(t)B \in \mathcal{M}(t'), then

    ABM(t)andABM(t). A \cap B \in \mathcal{M}(t) \quad \text{and} \quad A \cup B \in \mathcal{M}(t').

  2. Consequently, if we define the minimal and maximal optimal sets:

    M(t)=SM(t)S,M(t)=SM(t)S, \underline{M}(t) = \bigcap_{S \in \mathcal{M}(t)} S, \quad \overline{M}(t) = \bigcup_{S \in \mathcal{M}(t)} S,

    then both are monotone nondecreasing in tt:

    M(t)M(t),M(t)M(t). \underline{M}(t) \subseteq \underline{M}(t'), \quad \overline{M}(t) \subseteq \overline{M}(t').

🧾 Proof Sketch

We’ll outline the standard Topkis argument, adapted for set-valued choices.

Step 1: A Key Inequality

Under supermodularity and increasing differences, we can show that for all A,BXA, B \subseteq X and ttt' \ge t:

f(A,t)+f(B,t)f(AB,t)+f(AB,t).(★) \tag{★} f(A, t) + f(B, t') \le f(A \cup B, t') + f(A \cap B, t).

Why?

  • By increasing differences:

    f(B,t)f(B,t)f(AB,t)f(AB,t). f(B, t') - f(B, t) \le f(A \cup B, t') - f(A \cup B, t).

  • Rearranging gives

    f(B,t)f(AB,t)f(AB,t)+f(B,t). f(B, t') \le f(A \cup B, t') - f(A \cup B, t) + f(B, t).

  • Adding f(A,t)f(A, t) to both sides and using supermodularity of f(,t)f(\cdot, t):

    f(A,t)+f(B,t)f(AB,t)+f(AB,t), f(A, t) + f(B, t) \le f(A \cup B, t) + f(A \cap B, t),

    which yields (★).

Step 2: Apply Optimality

Let AM(t)A \in \mathcal{M}(t) and BM(t)B \in \mathcal{M}(t').
From (★):

f(A,t)+f(B,t)f(AB,t)+f(AB,t). f(A, t) + f(B, t') \le f(A \cup B, t') + f(A \cap B, t).

Because AA and BB are optimal:

f(A,t)f(AB,t),f(B,t)f(AB,t). f(A, t) \ge f(A \cap B, t), \quad f(B, t') \ge f(A \cup B, t').

Combining these with (★), we get equality:

f(A,t)=f(AB,t),f(B,t)=f(AB,t). f(A, t) = f(A \cap B, t), \quad f(B, t') = f(A \cup B, t').

Thus ABM(t)A \cap B \in \mathcal{M}(t) and ABM(t)A \cup B \in \mathcal{M}(t').

Step 3: Monotonicity of Extreme Optima (check)

Because the family M(t)\mathcal{M}(t) is closed under intersections and unions, the smallest and largest elements exist:

M(t)=SM(t)S,M(t)=SM(t)S. \underline{M}(t) = \bigcap_{S \in \mathcal{M}(t)} S, \quad \overline{M}(t) = \bigcup_{S \in \mathcal{M}(t)} S.

Applying Step 2 to the pair (M(t),M(t))(\underline{M}(t), \overline{M}(t')) yields:

M(t)M(t),M(t)M(t). \underline{M}(t) \subseteq \underline{M}(t'), \quad \overline{M}(t) \subseteq \overline{M}(t').

Hence both extreme optimal sets increase monotonically with tt.

💡 Intuition

Supermodularity expresses complementarity within the set SS — adding an element becomes more valuable when others are already present.

Increasing differences express complementarity between SS and the parameter tt — when tt rises (for example, a “market size” or “budget”), the incentive to choose a larger set increases.

Together, these ensure that optimal sets expand as tt increases — a clean monotonicity result without solving the optimization explicitly.

📚 Further Reading

  • Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Operations Research, 26(2):305–321.
  • Topkis, D. M. (1998). Supermodularity and Complementarity. Princeton University Press.
  • Milgrom, P., & Shannon, C. (1994). Monotone comparative statics. Econometrica, 62(1):157–180.

Popular Posts